Non-axisymmetric instability in thin discs

نویسندگان

  • Peter Goldreich
  • Ramesh Narayan
  • R. Narayan
چکیده

In a recent important paper, Papaloizou & Pringle (1984) have investigated the dynamical stability of a thick, differentially rotating disc of uniform entropy and uniform specific angular momentum. They find a strong global non-axisymmetric instability which grows on a dynamical time-scale. Here we show that a similar instability exists even in thin discs of arbitrary specific angular momentum. We find that a crucial ingredient for the existence of this instability is a good reflecting boundary at either the inner or outer edge of the disc (or both). We make simple estimates of the growth rate of the instability as a function of the azimuthal wavenumber of the mode, the angular momentum profile, the radial width and thickness of the disc, and the reflectivity of the boundaries. The importance of reflecting boundary conditions to the stability of thick discs/tori is however not completely clear because of the possibility that a KelvinHelmholtz-like instability, independent of boundary conditions, may be common (Papaloizou & Pringle, preprint).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear and nonlinear theory of a parametric instability of hydrodynamic warps in Keplerian discs

We consider the stability of warping modes in Keplerian discs. We find them to be parametrically unstable using two lines of attack, one based on three-mode couplings and the other on Floquet theory. We confirm the existence of the instability, and investigate its nonlinear development in three dimensions, via numerical experiment. The most rapidly growing non-axisymmetric disturbances are the ...

متن کامل

Unstable modes of non-axisymmetric gaseous discs

We present a perturbation theory for studying the instabilities of non-axisymmetric gaseous discs. We perturb the dynamical equations of self-gravitating fluids in the vicinity of a non-axisymmetric equilibrium, and expand the perturbed physical quantities in terms of a complete basis set and a small non-axisymmetry parameter ǫ. We then derive a linear eigenvalue problem in matrix form, and det...

متن کامل

Interface Modes and Their Instabilities in Accretion Disc Boundary Layers

We study global non-axisymmetric oscillation modes trapped near the inner boundary of an accretion disc. Observations indicate that some of the quasi-periodic oscillations (QPOs) observed in the luminosities of accreting compact objects (neutron stars, black holes and white dwarfs) are produced in the inner-most regions of accretion discs or boundary layers. Two simple models are considered in ...

متن کامل

Axisymmetric stability criteria for a composite system of stellar and magnetized gaseous singular isothermal discs

Using the fluid-magnetofluid formalism, we obtain axisymmetric stability criteria for a composite disc system consisting of stellar and gaseous magnetized singular isothermal discs (MSIDs). Both (M)SIDs are presumed to be razor-thin and are gravitationally coupled in a self-consistent axisymmetric background equilibrium with power-law surface mass densities and flat rotation curves. The gaseous...

متن کامل

Axisymmetric stability criterion for two gravitationally coupled singular isothermal discs

Using the two-fluid formalism with the polytropic approximation, we examine the axisymmetric stability criterion for a composite system of gravitationally coupled stellar and gaseous singular isothermal discs (SIDs). Both SIDs are taken to be infinitely thin and are in a self-consistent steady background rotational equilibrium with power-law surface mass densities (∝ r) and flat rotation curves...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009